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Predicting Diameter Distributions of
Longleaf  Pine Plantations: A Comparison
Between Artificial Neural Networks and
Other Accepted Methodologies

Daniel J. Leduc, Thomas G. Matney,

Keith L. Belli, and V. Clark Baldwin, Jr.

Abstract

Artificial neural networks (NN) are becoming a popular estimation
tool. Because they require no assumptions about the form of a fitting
function, they can free the modeler from reliance on parametric
approximating functions that may or may not satisfactorily fit the
observed data. To date there have been few applications in forestry
science, but as better NN software and fitting algorithms become
available, they may be used to solve a wide variety of problems-
particularly problems where the underlying relationship between
predicted and predictors is unknown. We benchmark tested an
alternative to the traditional Weibull probability distribution function,
diameter-at-breast-height moment, and direct parameter prediction
models for approximating stand-diameter distributions. Using a
feedforward backpropagation network, we demonstrated that NN are a
somewhat better option. Unlike Weibull approximations, NN
solutions cannot easily be mathematically constrained to match
known reality constraints, but this difficulty is easy to overcome in
practice.

Keywords: Connectionist models, parallel distributed processing
systems, parameter recovery, Weibull distribution.

Introduction

The three-parameter  Weibull  probabil i ty distr ibution
function  (Weibull  195 1) can take on a wide variety of shapes,
and has been found to be an applicable model for
approximating tree diameter-at-breast-height (d.b.h.)
dis t r ibut ions (Bai ley and Dell  1973).  Because of  i ts  plast ic i ty ,
many stand-level ,  diameter-distr ibution growth-and-yield
models  in  use today rely on the Weibul l  probabi l i ty
dis t r ibut ion funct ion (Bai ley and Aleixo da Si lva 1988,
Matney and Sul l ivan 1982b, Zamoch and others 199 1).
However,  the Weibull  distr ibution does not  span the entire
function space,  and i ts  performance as a d.b.h.  distribution
estimator varies widely among data sets .  In some d.b.h.
dis t r ibut ion model ing cases ,  the Weibul l  funct ion tends to
produce poor est imates in the tai ls  of  the dis tr ibut ion.  In
other  s i tuat ions,  i t  may lock down the ta i ls  and
overcompensate by missing badly in the middle part  of  the
distr ibut ion.  Because any small  miss  in  the middle and upper
d.b.h.  ranges of a distribution can have a large impact on
derived volume est imates,  growth-and-yield models

constructed from poor Weibull  est imates wil l  produce biased
volume estimates.  Thus,  general  applicabil i ty of a procedure
does not mean that  the procedure is  always best ,  as growth-
and-yield modelers are always searching for procedures to
improve d.b.h.  distr ibution est imates.  Artif icial  neural
networks (NN) may provide better  est imates of d.b.h.
dis tr ibut ions that  do not  rely on assuming an imperfect
under lying probabi l i ty  model .

In general,  artificial  NN are appropriate in modeling
si tuat ions:  (1)  where the applicat ion is  data intensive and
dependent on multiple,  interacting parameters;  (2) where the
problem area is  r ich in historical  data or examples;  (3) where
the available data are incomplete,  contain errors,  and
describe specific examples,  and (4) when the function to
determine solut ions is  unknown or  expensive to discover
(Bailey and Thompson 1990).  All  these condit ions are to
some degree met by the typical growth-and-yield database.
Theorems by Cybenko (1989),  Sun and Cheney (1992),  and
Light  (1992) show that  a  s ingle output ,  s ingle hidden-layer,
feedforward network employing continuous sigmoid and
other more general  activation functions with a sufficient
number of  hidden units  can approximate any continuous
function to any desired accuracy. This makes them ideal for
d.b.h.  distr ibutions of an unknown form. Some researchers,
e.g. Josin  1987,  point  to  Kolmogorov’s (1957) theorem on the
realization of real-valued functions as strong,  albeit  not
conclusive,  evidence that NN models can learn to
approximate any continuous real-valued mult ivariate
function.  They minimize error in the least-mean-square sense
based only on example mapping.  Hassoun (1995) gives an
excellent  discussion on the real-value function
approximation capabil i t ies of feedforward networks.

Given the advert ised great  promise of  neural  methodology,
we decided that  a preliminary investigative benchmark
comparison of  this  technique with the t radi t ional  methods of
diameter-distr ibution modeling was warranted.  The model
selected for  this  comparison is  a  s imple,  ful ly connected,
feedforward, backpropagation delta-learning-rule network.
The two tradi t ional  Weibull  probabil i ty funct ion-based
benchmark test  models selected were a diameter-moment



parameter recovery system and a direct-parameter prediction
model.  Each of these techniques was then used to predict
the diameter  dis tr ibut ions of  three dis t inct ly different ,
unthinned, planted longleaf pine (Pinuspalustris Mill.)
databases from stands originating under three different
condit ions.  The prel iminary resul ts  wil l  help us to determine
the amount of  addit ional  work that  wil l  be necessary to refine
the unthinned stand model  and construct  network models
for  predict ing thinned s tand-diameter  dis t r ibut ions.

We report the analysis and results of the multitude of
evaluation criteria selected for the preliminary benchmark
test ing of the NN mode.

Data

The three diameter-distr ibution NN training/test  data sets
selected for study were from longleaf pine plantat ions on (1)
abandoned agricultural  land (old fields),  (2) land that  had
received some form of site preparation, and (3) recently
cutover si tes.  The three data sets were plot data assembled
from several  experiments designed to represent the growth
response of planted longleaf pine across the Southern
United States.  The sites were considered problem free,  in
terms of  having low levels  of  competing vegetat ion as well
as  good ini t ia l  and subsequent  survival  of  planted t rees.
Table 1 presents the basic descriptive statistics for each of
the three data sets .

The input  variables selected for  modeling d.b.h.  distr ibutions
were stand age, base-age-25 site index, average height of
dominant and codominant trees,  and trees per acre. The
output units  selected for benchmark testing were trees per
acre in each l-inch (in.) d.b.h. class up to 20 in. In effect, by
selecting these outputs we had the NN approximate the
probabil i ty  densi ty funct ion of  d.b.h.  a t  points  spaced 1 in.
apart. There are many other output formats that could be
used, but this one fits  well within the limitations of a
backpropagation NN.

In regression model-building work,  there is  l i t t le  to be gained
by separat ing a data set  into parts  for  f i t t ing and test ing
(Hursch  199 1).  The only good way to test  a regression model
is  to  obtain independent  tes t  samples  f rom the same
population. However, because NN contain a large number of
nodes, and thus many parameters, there is a good chance of
overf i t t ing the t raining data set  and capturing not  just
general  patterns but sampling variat ion as well  (Leahy 1994).
Therefore,  i t  is  important  to have both f i t t ing/ training and
testing data sets as insurance against overfitting.  In this
study, we randomly parti t ioned each of the three data sets

into t raining and test  data  sets ,  designat ing a  t raining data
set  approximately twice the size of  the test  data set .

Model Development

Neural Network

The type of NN we selected for evaluation is  known as a
hetero-associative, fully connected, feedforward network.
This means that  the network is  composed of an input  layer,
one or more hidden layers,  and a mult iple unit  output layer;
and that all  of the nodes in every layer are connected to all
of  the nodes in each successive layer.  I t  is  also called a
backpropagation network because, during training, errors are
backpropagated from the output layer to the inner
connections using the delta rule.  While there is  a large
number of possible network models to choose from, we
selected the backpropagation network because i t  is
recognized as being best  sui ted to function approximations
(Hassoun 1995).  Attempting to  evaluate  al l  possible
networks for a part icular problem would be an overwhelming
task .

Figure 1 shows the general ,  s ingle hidden-layer NN
backpropagation model structure adopted for each data set .
Between data sets,  the number of nodes was varied to obtain
the lowest mean-squared error on the outputs.  Otherwise,  no
changes in the structure were necessary to  obtain  a
satisfactory fi t  for each data set .  The bias term connected to
both the hidden layer and the output  layer is  a  constant
value ( typical ly equal  to one) that  is  analogous to the
intercept term in a l inear regression equation.

An art icle by Freeman ( 1992) and a book by Hassoun (  1995)
include descript ive summaries and sufficient  mathematics to
explain the actual  backpropagation training process.  An
abbreviated explanation of  this  process is  shown in f igure 2.

In the course of deciding to use a single hidden-layer
network,  we tested numerous network structures to
determine the optimum number of  hidden layers and the
numbers of nodes in each. In a typical NN, there can be one
or more hidden layers.  Recent research into backpropagation
networks shows that  almost  any function can be
synthesized using a  suff ic ient ly  complex network with  a
single hidden layer (NeuralWare  199 1 d). We made several
at tempts to use more than a s ingle hidden layer  but
observed no noticeable improvements in precision or
accuracy. Thus the single hidden-layer NN was constructed
and trained for each data set.
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Table l-Descriptive statistics for the training and testing data sets used in the comparison of neural network
methodology to traditional Weibull models

Old field Site prepared Cutover

Variable Training Testing Training Testing Training Testing

Observations (no.) 292

Age (years)
Average 14.8
Range 8 - 30

Trees per acre
Average 715.4
Range 74 -1,185

Trees per acre
> I in. d.b.h.

Average 704.7
Range 74 -1.185

Total height of
trees with d.b.h.
> I in. (tt)

Average
Range

Total height of
dominants and
codominants (ft)

Average
Range

Basal area (sq. tt.)
Average
Range

Quadratic mean
diameter (in.)

Average
Range

Site index
(b.a.  25) (ft)

Average
Range

32.2
I5 -

36.7
I4 -

96.4
8 -

4.94
2.3 -

56.8
34 -

62

67

230

8.4

80

122 200 I08 636 333

14.8 15.6 15.8 18.2 18.7
9 - 30 8 - 25 IO - 25 9 - 48 9 - 48

71  I.7 609.9 584.3 590.7 593.3
284 -1,160 123 -1 ,036 133 -1 ,089 133 -1 ,210 133 -1 ,136

699.7 559.2 542.8 538.6 552.2
284 -1,160 123 -I ,000 133 - 988 133 -1 ,210 133 -1 ,136

32.5 20.2 20. I 34.4 35.5
I6 - 62 7 - 38 8 - 37 8 - 80 9 - 82

36.8 23.7 23.5 38.6 39.7
I5 - 69 9 - 41 IO - 41 8 - 86 8 - 88

94.9 34.2 32.8 74.5 80.1
28 - 194 5 - II3 6 - 104 5 - 221 5 - 229

4.98 3.18 3.20 4.83 5.02
2.7 - 7.9 1.3 - 5.7 l.6- 6.4 I.6 - 12.7 1.5 - 12.9

57.5 38.7 37.9 56.5 56.7
36 - 76 20 - 77 20 - 77 20 - 103 26 - 104

-

The number of nodes in a hidden layer is another parameter Matching the at t r ibutes  of  a  NN to the requirement  that  a
that can be changed in a NN (fig. 1).  The number used for diameter distr ibution must have exactly as many trees as
each data set  was determined by experimentally f inding the there are in the stand required some addit ional  calculat ions.
optimum (based on the minimum mean-squared error First ,  rather than work with the actual number of trees,  the
cri terion) f i t  of  the training data set  using different  numbers output of this network was designed to be the percentage of
of nodes.  These optimums were three nodes for old-field trees in each I - in.  diameter class from 1 to 20 in.  Thus,  in
sites,  four nodes for cutover si tes,  and six nodes for effect ,  output  for  any d.b.h.  class is  the probabil i ty of  a
prepared si tes. given tree belonging to that  class.  For a network to be



D.b.h.
classes

Bias

Bias

Site Age Height of Number of
index dominants trees per acre

Figure I---Diagram of the basic structure used for neural  networks tested in this paper. They are all similar in structure except for a variable number
of nodes in the hidden layer. Each square block is a node. Nodes can be input like age, output like the proportion of trees in any diameter class, or
hidden, which are just internal summation and transformation points. Each line is a connection where variable weights are applied.

logical ly  consis tent  with a  probabi l i ty  funct ion,  a l l  diameter-
class  probabil i t ies  must  be nonnegative and sum to one.
These constraints cannot be imposed on a NN of the type
used here,  but  they can be obtained with minor
postprocessing.  This  is  done s imply by (1)  set t ing any
output less than zero to zero,  and (2) dividing each output
by the  sum of  the  outputs .

While there are many computer packages that could be used
to train a NN, most  of  the work for this  paper was done with
NeuralWorks  Professional II/plus (NeuralWare  199 1 c). This
is  significant  because there are many assumptions and
choices that vary among different software packages. All of
the assumptions wil l  not  be explained here,  but  specif ic
variat ions from the defaults  are detai led.

NeuralWorks  allows the network developer to choose from
among several  transfer or squashing functions.  We used the
hyperbolic tangent function with a range of -1 to 1 along a
smooth,  s igmoidal  curve to  t rain al l  of  the networks in  this
s tudy.  NeuralWare  (199 1  b)  recommends the function as very
effective in backpropagation networks.

NeuralWorks  automatical ly  scales  a l l  inputs  and outputs  into
a subset of the range of the transfer function chosen. For the
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hyperbolic tangent, this range is from -0.8 to 0.8. Guan and
Gertner  (199 1)  chose to use a logist ic  function in their
survival-probabi l i ty  network model  par t ly  because i t  has  a
range of 0 to 1.  I t  is  desirable to have the network outputs
already in the correct range, but NeuralWare’s  automat ic
scaling el iminates the need for preliminary data scaling and
makes the choice dependent only upon the slope properties
of the transfer  function.  Extensive test ing showed that  the
hyperbolic tangent worked best  with the NN we used.

Standard backpropagation uses the delta error correction
rule,  which adjusts the node weights after each example is
presented. We used the normalized, cumulative delta rule for
al l  the networks trained.  The cumulative delta rule
accumulates the error for each output and does not adjust
weights unti l  al l  of  the observations in an epoch are
presented.  I t  also avoids learning rate changes by dividing
the sum of the errors by the square root of the number of
observations in an epoch.  An epoch may consti tute the
entire data set or any subset thereof.  We used an epoch size
of  100 observat ions.

Multiplying the backpropagated error by a learning
coefficient and adding the result  to the current weight makes
weight  adjustments in standard backpropagation.  Two



Multiply input values
by current

connection weights

1 I

Transform sums by
squashing function

connection weights

1 1

No
Adjust connection
weights based on
calculated error

Calculate the

Y e s

Figure 2--A flowchart of the training and use of a backpropagation neural network. A squashing function is
a f&ction  such as the hyperbolic tangent, which transfonns its input into a number between -1 and 1.



common modif icat ions to this  technique were used in the
training.  The f i rs t  is  the addi t ion of  momentum that  adds
some port ion of  the previous weight  adjustment  to  the
current weight adjustment.  The second, developed by Tariq
Samad (1988)  is  cal led fast  learning.  This technique adds a
multiple of the error from the next lower layer to the
activation value before the weight update.  Equations (1)
through (3) show the change in weight for standard
backpropagation,  backpropagation with momentum, and
backpropagation for  fast  learning with momentum,
respectively.

A w ,l[sl  = hef*  eJIrl  * ~~1~41 (1)

A w ,,I51  = Icoep  ells,  * xils-ll+ mmentum*  Aw j,Ls] 69

A w ,,lsl  = lcoefre,lsl  * txl~s-lj  + fastlm*eics-fl)
+ mOmentUm* A w ,l,s, (3)

w h e r e

AwJils,  = the change in weight to be applied to the
connection between the i th node in layer s-  1 to the j th node
in layer  s ;

eJbl  = the error at node j of layer s;

xi[s-II = the current output of the ith node in layer s-l; and
lcoef, momentum, and fastlm = the coefficients for learning,
momentum, and the fast- learning adjustment,  respectively
(NeuralWare  1991a).

A final  characterist ic that  needs to be considered in training
these networks is how many iterations are necessary.  We did
not set  a f ixed number of i terations,  nor did we set  a f ixed
level of error that we considered small enough. Rather,  we
observed trends in the reduction of the root-mean-squared
error  (RMS) during the training process.  During training,
RMS usual ly  drops  quickly in  the  beginning then s lows and
may even climb again. For each structure that we tested, we
selected parameters providing the lowest  value for  RMS.
Observing the trend as well  as the lowest  value,  helped us to
avoid some of  the spurious,  apparently optimum results  that
can occur in any nonlinear i terative fi t t ing process.  When
results appeared spurious,  we reinit ial ized the network to see
if  s imilar  or  different  optimum values would be generated.

Weibull with Parameters Recovered from Stand
Distribution Characteristics

Parameter  recovery systems for  probabil i ty distr ibution
functions have two parts .  First ,  equations are developed to
predict  the expected values of d.b.h.  moments and/or  order
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stat is t ics  such as ar i thmetic  mean d.b.h.,  quadratic mean
d.b.h. ,  minimum d.b.h.,  and percenti les.  Second, the result ing
system of  equat ions is  used to solve for  the unknown
parameters  of  the distr ibution (Matney and Sull ivan 1982a,
Zamoch and others 199 1).

Matney and Farrar (1992) and Farrar and Matney (1994)
successfully used the three-parameter Weibull  distr ibution
parameter recovery system selected for the benchmark test
to s imulate  the unthinned stand yields of  cutover ,  site-
prepared loblolly pine (I?  tuedu  L.) plantations and natural
longleaf pine,  respectively.  The steps used to construct  the
parameter recovery system are:

1.  Develop equations for  predict ing stand minimum d.b.h.,
arithmetic mean d.b.h.,  and quadratic mean d.b.h. from age,
surviving trees per acre,  and average height of dominants
and codominants.  The ari thmetic mean d.b.h.  is  the first-
order moment of d.b.h.,  and the quadratic mean d.b.h. is
the square root of the second-order moment of d.b.h..

2.  Set  the location parameter (a)  of the Weibull  probabil i ty
dis t r ibut ion equal  to  one-half  the es t imated minimum stand
d.b.h.

a = 0.5 dbh,,,

3. Equate the first-order and second-order d.b.E
their  expected values.  That is

E(dbh)=dbh,=a+bF(l+l/c)

E(dbh’)=dbh,‘=  a’ +2abr(l+l/c)+b’T(

where

(4)

1 . moments to

(5)

I + 2 /c) (6)

E(dhh)=  dhh, is the expected value of d.b.h.,  and the
arithmetic mean d.b.h.  (first-order moment 0fd.b.h.);

F(dbh*)  = dbh,2 is the expected value of d.b.h.2,  and the
square of the quadratic mean d.b.h. (second-order moment of
d.b.h.);
b = the scale parameter of the Weibull;
c = the shape parameter of the Weibull;  and
F = the value of the gamma function with argument a.

4.  Solve equation (5) for the b parameter and substi tute the
result  for  the b parameter  in equation (6) .  This  yields a
nonlinear  equation involving only the unknown parameter
c and the known parameter a that  is  solvable for c.  From
equation (5),



b=  dbh,-a
r(l+l/c)

On substi tut ion of  equation (7)  for  parameter  b in equation (6)
the equation involving only parameters a and c that is in a
convenient ,  nonlinear  equat ions solut ion form is :

’f(c) = - a’ + 2(a)dbh,  + dbh -a
-c- 1
7
r(l+l/c)

r(l+2/c)-dbhq? (8)

5. Solve equation (8) for the value of c sat isfying the
condition f(c) = 0 using an algorithm, such as the
bisection or secant methods,  for f inding the roots (zeros)
of nonlinear equations (Burden and others 198 1).

Weibull with Regression Predicted Parameters-
Direct Prediction

To obtain regression equations to direct ly predict  the
parameters of  the Weibull  distr ibution,  we f i t ted the
cumulat ive dis t r ibut ion funct ion of  the  Weibul l  to  the  sample
plot  empir ical  cumulat ive d.b.h.  d is t r ibut ions  us ing the  SAS
Gaussian NONLIN procedure (SAS Institute Inc. 1990).  We
then calculated regression equations to predict  the est imated
parameters from age, surviving trees per acre, and average
height  of  dominant  and codominant  t rees.  Dell  and others
(198 1) as well  as other researchers,  used the direct prediction
method to build unthinned  stand-yield models.

Methods of Model Testing and Comparison

A NN, as used in this  modeling effort ,  is  highly nonlinear;
and no assumptions about the residual error structure were
made. Because of this,  the NN models are compared to the
two Weibull  models  using mathematical  measures of
difference that  resemble standard goodness-of-t i t  s tat is t ics,
but  which cannot  be used in actual  hypothesis  test ing
because the probabi l i ty  dis t r ibut ions remain unknown.
Simply,  the numbers calculated are observed to be higher or
lower than those of  competing models.  In these calculat ions,
the degrees of freedom used is  assumed to equal the number
of observations, which is equal to the number of
distr ibut ions compared mult ipl ied by a f ixed value of  20,  the
assumed number of classes in each distr ibution.  Each of the
test observations was estimated with the appropriate site-
specific model using each of the three methods.  Then these
individual results were combined for an overall view of
model  qual i ty .

The first  set  of comparators calculated is  based on the
goodness-of-f i t  s tat is t ics  that  are usually presented for  f i t ted
models.  While none of these calculations adequately
describes model  qual i ty,  as  a  set  they provide a
comprehensive description.  Included in this  set  are mean-
squared error,  l i t  index (Schlaegel 198 l), generalized R?
compared to the null  model (Anderson-Sprecher 1994), a
count of the number of t imes the model diameter class was
predicted correct ly,  the number of  t imes the probabil i ty of  a
tree fal l ing in the model class was closest  to the actual
probabil i ty,  the number of  t imes the predicted probabil i ty of
a tree fal l ing in the upper or lower quart i le was closest  to the
actual  probabil i ty,  the number of t imes the calculated x2 was
lowest ,  the number of t imes the calculated Kolmogorov-
Smimov stat is t ic  was lowest ,  the number of  t imes the
predicted ari thmetic and quadratic means were closest  to
those of  the actual  distr ibution,  and the number of  t imes that
the standard deviat ion of the predicted distr ibution was
closest  to  that  of  the actual  dis t r ibut ion.  For  the x2 and
Kolmogorov-Smimov calculations, each check was done for
the entire distr ibution and also for the upper and lower
quar t i les .

I t  is  easy to pick one’s favori te  test  s tat is t ic  and then
comparatively rank one model above or below another based
on i t .  Unfortunately,  this  does not  te l l  the whole s tory of
how the model performs on various segments of the data.  To
better grasp this,  we calculated three indicators of
performance along the entire diameter distribution. In each of
the following indicators,  error is  calculated as the predicted
value minus the actual value (a posit ive error indicates
overprediction). The first is average error for each diameter
class.  I t  is  an indicator of bias.  The second is the average
absolute value of errors.  I t  provides an indicator of the
typical  misf i ts  of  the model  when posi t ive and negat ive
values are not al lowed to cancel.  Lastly,  the maximum
absolute value of an error al lows one to see how poorly the
model can perform in extreme cases.

Beyond these tests  of prediction quali ty,  we subjected each
methodology to  a  sensi t ivi ty  analysis .  This  was done by
comparing the predicted probabili t ies for each diameter class
to the same prediction when the input values for age,  height
of dominant  t rees > 1 in.  in diameter,  and number of trees per
acre > 1 in.  in diameter were each individually varied by a 1 O-
percent increase and a 1 O-percent decrease. These
differences were observed by diameter class. The effect this
procedure had on basal area, arithmetic mean d.b.h.,  and
quadratic mean d.b.h. was also examined for each site type
and for  al l  s i tes  combined.



Results and Discussion

The results  of the trained NN are contained in FORTRAN
subroutines not  shown in this  paper because of their  large
size involving one parameter for every connection. There are
95 parameters for old-field sites, 120 parameters for cutover
sites,  and 170 parameters for prepared sites.

The Weibull  distr ibution with parameters recovered from
stand-distr ibution characteris t ics  rel ies  on predict ion
equations of various stand parameters.  These prediction
equations are presented in figure 3 for each of the three data
se t s .

The Weibull  dis tr ibut ion with regression predicted
parameters produces actual prediction equations for the

__________ - ______ - ______ - ______ - ______ -___ Old Field1__________1_________I______ - ______________ -__

1.7884
In dbhmin = 3.7388 - 0..5645@  tpa) - ~
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Figure 3----Equation sets for predicting the minimum, arithmetic, and quadratic mean d.b.h. in inches from age, surviving trees
per acre (tpa), and average height in feet of dominant and codominant trees (h,) for the three longleaf  pine plantation data
sets.
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Figure 4-Equation sets for predicting the a, b, and c parameters of the Weibull distribution from age, surviving trees per acre (tpa), and
average height in feet of dominant and codominant trees (hd) for the three longleaf  pine plantation data sets.

Weibull  parameters.  Figure 4 presents the prediction
equation sets for each of the three data sets.

The first  comparison of note is  a graphical  examination of the
performance of various diameter-distribution recovery
methods.  Figures 5 and 6 show the three predicted
distr ibutions as l ines against  a gray backdrop of actual
example dis t r ibut ion.  Figure  5  shows a  unimodel  dis t r ibut ion
and s imply i l lustrates  that  a l l  of  the examined methods
produce a smooth curve that  does a fair  job of modeling the
intended dis t r ibut ion.  Figure  6  shows a  mult imode1
dis t r ibut ion that  no method f i ts  very wel l ,  but  i t  i l lustrates
the flexibility of the NN to fit multimode1 distributions. In
each, the NN provided the best  t i t  based on the x’ tes t
s ta t is t ic .

Mathematical measures of difference are shown in table 2.
All  of  the models provided very good fi ts  to the actual
dis t r ibut ions,  but  the NN was best  by almost  a l l  measures .

Figure 7 is a plot of the average error (or bias) by diameter
class for  each of the tested methodologies.  All  of  the models
are least  accurate in the smaller diameter classes and most
accurate in the larger.  It  can also be seen that the regression
method has the greatest  deviat ion and the NN the smallest .

Figure 8 shows the average absolute deviat ions that  result
from each of the three methods.  When the posit ive and
negative deviations are not al lowed to cancel each other out,
the average errors are much greater,  but sti l l  the largest
deviations occur in the smaller diameter classes where they
have the least  influence on volume and value.  By this
measure,  al l  of the methods are about equal.

Both figures 7 and 8 show average performance of the
presented methodologies.  Figure 9 shows the worst-case
performance of them. Once again, the lowest accuracy is in
the smallest  diameter classes and the methods are al l  about
the same. The maximum deviat ions are strongly negative and
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Table 2-Some mathematical measures of difference for artificial neural networks and two methods
of fitting Weibull distributions

Comparator
Neural Parameter
network recovery Weibull

Regression
Weibull

Mean-squared error 0.002378 0.002592 0.002861
Fit index .78 .76 .74
Generalized R2 .82 .8l .79
Model class same as actual I2 2 2
Percentage oftrees  in model class closest to actual 216 190 I57
Percentage of trees in lower quartile closest to actual 253 170 140
Percentage of trees in upper quartile closest to actual 202 195 139
Lowest  xl 259 136 1 6 8
Lowest x2 in lower quartile 295 125 143
Lowest x2 in upper quartile 287 202 74
Lowest Kohnogorov-Smimov statistic 244 161 I58
Lowest Kolmogorov-Smimov statistic in lower quartile 257 I65 I41
Lowest Kohnogorov-Smimov statistic in upper quartile 203 160 200
Arithmetic mean d.b.h. closest to actual 208 201 154
Quadratic mean d.b.h.  closest to actual I87 199 I77
Standard deviation of d.b.h.  closest to actual I41 I71 251

disturbingly large.  The strong negative bias shows that  one
large error encountered is the presence of trees in a diameter
class when none is  predicted.  One cause of this is  that ,  in
general,  smaller diameter trees grow or die out over t ime, but
there are several cases where a small diameter tree will
stagnate and neither grow nor die.  The abil i ty to predict  this
phenomenon would great ly enhance our abil i ty to model  the
diameter  dis t r ibut ions of  longleaf pine  s tands .

Our results show that NN can perform at least  as well  as
tradit ional  methods and often better .  They may be reducible
to nonlinear  models  (Sarle 1994)  however unwieldy,  but  their
strength is  that  the model  form does not  have to be specif ied
in advance. This is a great advantage because, in spite of
many efforts  in process modeling,  we st i l l  do not  understand
the processes of  growth that  would al low us to create
models  not  t ied to empirical  data.  Even the Weibull  function
has no biological  meaning.  I t  is  s imply a  mathematical ly
handy function with the abi l i ty to assume a variety of
appropriate shapes (Weibull  195 1).

There are three principal weaknesses in NN as used in this
paper.  The f irst  is  that  al though a model does not  have to be
specified,  the number of hidden nodes and layers and the
transfer  funct ion to  be used s t i l l  must  be determined.  A
correct choice of options can make a great difference in a
modeling effort’s success.  Also, there are many rules of

thumb for  select ing variables ,  but  i t  real ly comes down to a
matter of trial and error.

The second l imitat ion is  that  one cannot  count  on some of
the desired constraints  that  can easi ly be imposed by
mathematical  model selection.  Constrained least  squares
d.b.h.  moment-recovery algorithms such as those presented
in Matney and others (  1990) and in Matney and Belli (1995)
provide for the calculation of logically constrained residual
and future d.b.h.  distributions.  On the other hand, natural
constraints  bui l t  into the data  sets  may al low for
development of  NN models  that  are almost  logical ly
constrained without  imposing formal  constraints .  For  many
data sets,  the strength of the data should generate NN
solutions that  are naturally constrained. In general ,  an
unconstrained solut ion to a  problem wil l  have lower mean-
square error than a constrained solution to the same
problem. In l inear space, a constrained model with one or
more parameter constraints imposed always has a higher
mean-square error than the same model with no parameter
constraints.  Hence,  unnecessary constraints should not be
imposed on a solution to a problem. However,  NN are
nonlinear and the theory for  l inear  systems is  not  direct ly
applicable.  I t  is  possible to have a constrained nonlinear
estimator with lower mean-square error than the same model
without  parameter  constraints .
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If  constraints are necessary,  they can be difficult  to apply to
the output of a NN model when using commercial  software.
Users of growth-and-yield models require that  the residual
stand after-thinning and before-thinning diameter
distr ibutions be logical  in relat ion to each other.  Likewise,
they insis t  that  projected diameter  dis t r ibut ions be logical ly
related to  the ini t ia l  diameter  dis t r ibut ion.  For  thinned s tands
this means,  for example,  that  the est imated diameter
distr ibution should not  have more trees in a  diameter  class
after  thinning than before thinning,  and that  the after-
thinning stand should have the desired basal area or trees
per acre.  For growth projections, users expect the future
distr ibut ion to shif t  to  the r ight  and have a nondecreasing
mean diameter.  The NN methods already are strictly
empirical; and achieving these kinds of constraints is easy if
one is  wil l ing to  use addi t ional  programming in  computer
models when necessary,  or to combine neural  methodologies
with other ,  more tradit ional  s tat is t ical  approaches.

The third  l imita t ion is  that  the  network that  resul ts  f rom a
training program appears to be a black box. You can see the
inputs  and the outputs ,  but  the process of  moving from one
to the other  is  not  obvious.  In this  case,  i t  is  implemented as
a C or  FORTRAN program, but  an examination of  this
program just  reveals so many interacting equations that  clear
relat ionships are hard to determine.  Fortunately,  this  lat ter

difficulty can be easily addressed through the use of
sensi t ivi ty  analysis  (Klimasauskas 199 1) .

We conducted a sensi t ivi ty analysis  on the input  parameters
of age, height of dominant trees,  and number of trees per
acre to see what effect changes in these parameters would
have upon stand basal area, arithmetic mean d.b.h.,  and
quadratic mean d.b.h.  These results  for al l  si te types
combined are shown in table 3.  This table shows that  al l  of
the methods are  very s imilar  in  their  sensi t ivi ty  to  input ,  with
only the age influence on basal area showing a change that
exceeded the change in input.  Also i t  shows that  trees-per-
acre has a moderate influence, and the height of dominant
trees has almost none. These results are rather similar across
all  three si te types (not expanded here) with old-field si tes
being the least  sensi t ive and prepared si tes  the most .

Conclusion

Artificial  NN are an excellent alternative to the traditional
method of  predict ing unthimred  s tand-diameter  dis t r ibut ions
with est imated Weibull  probabil i ty  funct ions.  The superiori ty
of the NN arises because the Weibull  is not the correct
model for  the data in this  study.  On other data sets ,  when the
Weibull  dis tr ibut ion f i ts  bet ter ,  e i ther  the NN or Weibull

Table 3-Percentage deviations in some key outputs caused by lo-percent changes in the input
variables for each of the three examined models

Age Height of dominant trees Trees per acre

Result  changed Increase Decrease Increase Decrease Increase Decrease

Artificial neural network

Basal area
Arithmetic mean d.b.h.
Quadratic mean d.b.h.

13.8
7.0
6.7

-13.7 - 0.6 1.9 7.5 - 7.7
- 7.4 - .6 1.0 8.8 - 9.0
- 7.1 - .4 .8 3.7 - 3.9

Parameter recovery Weibull

Basal area 13.5 -13.5
Arithmetic mean d.b.h. 6.8 - 7.2
Quadratic mean d.b.h. 6.5 - 7.0

.9 .2
.l .4
.4 0

Regression Weibull

7.4 - 7.6
8.5 - 8.6
3.6 - 3.9

Basal area 14.9 6.3 8.4 5.2 7.5 - 7.6
Arithmetic mean d.b.h. 7.1 - 6.3 - .3 2.2 8.7 - 8.8
Quadratic mean d.b.h. 7.0 - 5.3 - .3 2.1 3.7 - 3.9
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probability distribution approaches will perform well. The
clear advantage of the NN over the parametric function
modeling techniques is that in almost all cases a NN solution
wil l  minimize the RMS error .  I f  the Weibul l  dis t r ibut ion or
other assumed probability tinction  do not fit the data, the
modeler is left with the very difficult task of piecing together
and/or f inding a new parametric model form for the problem.

The next evolutionary step for applying NN in growth-and-
yield modeling is to find network models for estimating
diameter distributions after thinning and for estimating
future  diameter  dis t r ibut ions using the current  dis t r ibut ion.

Feedforward networks, as used in this paper, are just one of
many kinds of NN; and investigation of other forms may lead
to even better results. The NN theory is a rapidly expanding
arena of study that will find application in many fields. The
field of forestry is  an area ripe with potential  for NN
explorat ion.
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Artificial neural networks (NN)  are becoming a popular estimation tool. Because they require no
assumptions about the form of a fitting function, they can free the modeler from reliance on
parametric approximating functions that may or may not satisfactorily fit the observed data. To
date there have been few applications in forestry science, but as better NN software and fitting
algorithms become available, they may be used to solve a wide variety of problems-particularly
problems where the underlying relationship between predicted and predictors is unknown. We
benchmark tested an aitemative  to the traditional Weibull probability distribution function,
diameter-at-breast-height moment, and direct parameter prediction models for approximating
stand-diameter distributions. Using a feedforward backpropagation network, we demonstrated that
NN are a somewhat better option. Unlike Weibull approximations, NN solutions cannot easily be
mathematically constrained to match known reality constraints, but this difficulty is easy to
overcome in practice.

Keywords: Connectionist models, parallel distributed processing systems, parameter recovery,
Weibull distribution.
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